
8 Computer

A MODNART

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

U
niversities teach engineers
all sorts of valuable things.
We’re taught mathemat-
ics—especially calculus,
probability, and statis-

tics—all of which are needed to under-
stand physics and circuit analysis. We
take courses in system design, control
theory, electronics, and fields and
waves. But mostly what we’re taught,
subliminally, is how to think like an
engineer.

Behind most of the classes an engi-
neer encounters as an undergraduate
is one overriding paradigm: the black
box. A black box takes one or more
inputs, performs some function on
them, and produces one output.

It seems simple, but that fundamen-
tal idea has astonishing power. You can
build and analyze all engineered sys-
tems—and many natural systems,
specifically excluding interpersonal
relationships—by applying this para-
digm carefully and repetitively.

Part of the magic is that the function
the black box contains can be arbi-
trarily complex. It can, in fact, be com-
posed of multiple other functions. And,
luckily for us, we can analyze these
compound functions just as we analyze
their mathematical counterparts.

As part of an audio signal processing
chain, a black box can be as simple as
a low-pass filter. As part of a commu-
nications network, it can be a compli-
cated set of thousands of processors,
each with its own local network.

MARVELS OF COMPLEXITY
Modern microprocessors are mar-

vels of complexity. Way back when,
the Intel 4004 had only 2,300 transis-
tors, a number that is not too large for
smart humans to keep in their heads.
Engineers knew what each transistor
did and why it had been placed where
it was on the die. The bad news was
that they had to know; there were no
CAD tools back then to help keep
track of them all.

But even then, the black box func-
tional decomposition paradigm was
essential. At one level of abstraction, a
designer could ask whether the drive

current from transistor number 451
was sufficient to meet signaling
requirements to transistors 517 and
669. If it was, the designer would con-
ceptually leave the transistor level and
take the mental elevator that went to
the next floor up: logic.

At the logic level, the black boxes
had labels like NAND and XOR. The
designer’s objective at this level was to
make sure that the functions selected
correctly expressed the design intent
from the level above: Should this par-
ticular box be a NAND or an AND?
There were also subfloors. It’s not only
possible, it’s also a very good idea to
aggregate sets of boxes to form more
abstract boxes. A set of D flip-flops is
routinely aggregated into registers in
synchronous designs, for example.

Next floor up: the microarchitecture.
At this level, the boxes had names like
register file, ALU, and bus interface. The
designer considered things like band-
widths, queuing depths, and through-
put without regard for the gates under-
lying these functions or the actual flow
of electrical currents that was such a
concern only a few floors below.

For hardware engineers, there was
one more floor: the instruction set
architecture. Most computer engineers
never design an ISA during their
careers—such is the commercial impor-
tance of object code compatibility.

For decades now, the prevailing
theory has been that to incentivize a
buyer to suffer the pain of mass code
conversion or obsolescence, any new
computational engine that cannot run
old code, unchanged, must be at least
N times faster than anything else avail-
able. The trouble with this theory is
that it has never been proven to work.
At various times in the past 30 years, N
has arguably reached as high as 5 or
10 (at equivalent economics) without
having been found to be compelling.

The x86 architecture is still king. But
the latest contender in the ring is IBM’s
Cell, introduced in February at ISSCC
05. Touted as having impressive com-
putational horsepower, Cell is aimed
initially at gaming platforms that may

Engineers,
Programmers,
and Black Boxes
Bob Colwell

You can build
and analyze all
engineered
systems by
applying the black
box paradigm.

March 2005 9

not be as sensitive to the compatibility
burden.

Stay tuned—this new battle should
play out over the next three years.
Maybe computer engineers will get to
play out in the sunshine of the top floor
after all.

SOFTWARE FOLKS DO IT TOO
The ability to abstract complex things

is vital to all of engineering. As with the
4004’s transistors, without this ability,
engineers would have to mentally retain
entire production designs. But the
designs have become so complicated
that it has been about 25 years since I
last saw a designer who could do that.
Requiring designers to keep such com-
plex designs in their heads would limit
what is achievable, and doing so isn’t
necessary as long as we wield our black-
box abstractions properly.

In the early days of P6 development
at Intel, I found it amusing to try to
identify various engineers’ back-
grounds by the way they thought and
argued during meetings. My observa-
tions went through several phases.

I was intrigued to observe that a
group of 10 engineers sitting around a
conference room table invariably had
a subtle but apparent common mode:
They all used the black-box abstraction
implicitly and exclusively, as naturally
as they used arithmetic or consumed
diet Coke. Although these engineers
came from different engineering
schools, and their degrees ranged from
a BS to an MS or a PhD, they implic-
itly accepted that any discussion would
occur in one of two ways—either at
one horizontal abstraction layer of the
design or explicitly across two or more
layers. It was generally quite easy to
infer which of those two modes was in
play, and all 10 engineers had no diffi-
culty following mode changes as the
conversation evolved.

When thinking about this (and yes,
I probably should have been paying
attention to the technical discussion
instead of daydreaming), it occurred to
me that the first two years of my under-
graduate EE training had sometimes

seemed like a military boot camp. In
fact, it was a boot camp. With the
exception of social sciences, humani-
ties, history, and phys. ed., all of our
classes were done in exactly this way.

I don’t know if we became EEs
because we gravitated toward the aca-
demic disciplines that seemed most
natural to us, or if we just learned to
think this way as a by-product of our
training. Maybe we just recognized a
great paradigm when we saw it and did
the obvious by adopting it.

Microprocessor design teams also
have engineers with computer science
backgrounds, who may not have gone
through an equivalent boot camp. I
tried to see if I could spot any of them
by watching for less adroitness in fol-
lowing implicit abstraction-layer
changes in meetings. I thought I saw a
few instances of this, but there’s a
countervailing effect: CS majors live
and breathe abstraction layers, pre-
sumably by dint of their heavy expo-
sure to programming languages that
demand this skill.

When I began pondering the effect
of black-box function-style thinking
and programming language abstrac-
tions to see if that might distinguish
between CS- and EE-trained engineers,
I did see a difference. Good hardware
engineers have a visceral sense of
standing on the ground at all times.
They know that in the end, their design
will succeed or fail based on how well
they have anticipated nature itself: elec-
trons with the same charge they have
carried since the birth of the universe,
moving at the same speed they always
have, obeying physical laws that gov-
ern electronic and magnetic interac-
tions along wires, and at all times
constrained by thermodynamics.

Even though EEs may spend 95 per-
cent of their time in front of a com-
puter putting CAD tools through their
paces (and most of the other 5 percent
swearing at those same tools), they
have an immovable, unforgettable
point of contact with ultimate reality
in the back of their minds. Most of the
decisions they make can be at least par-
tially evaluated by how they square
against natural constraints.

CONSTRAINTS ARE GOOD FOR YOU
You might think such fixed con-

straints would make design more diffi-
cult. Indeed, if you were to interview a
design engineer in the middle of a tough
morning of wrestling with intransigent
design problems, she might well
express a desire to throw a constraint
or two out the window. Depending on
the particular morning, she might even
consider jumping out after them.

In general, though, constraints and
boundaries are a good thing—they
focus the mind. I’ve come to believe
that hardware engineers benefit
tremendously from their requisite close
ties to nature’s own rules.

On the other hand, the CS folks are
generally big believers in specifications
and writing down the rules by which
various modules (black boxes) inter-
act. They have to be—these “rules” are
made up. They could be anything.

Assumptions are not just subtly dan-
gerous here, they simply won’t work—
the possibility space is too large. It’s not
that every choice a hardware engineer
makes is directly governed by nature
and thus unambiguous. What func-
tions go where and how they commu-
nicate at a protocol level are examples
of choices made in a reasonably large
space, and there a CS grad’s proclivity
to document is extremely valuable.

To be sure, some programmers face
natural constraints just as real as any
the hardware designers see. Real-time
code and anything that humans can
perceive—video and audio, for exam-
ple—impose the same kinds of immov-
able constraints that a die size limit
does for a hardware engineer.

In general, constraints
and boundaries are a

good thing—they focus
the mind.

10 Computer

A t R a n d o m

I’m not looking for black and
white—I’m just wondering if there are
shades of gray between EE and CS. My
attempt to discern differences between
EE and CS grads was simply intended
to see if the two camps were distin-
guishable “in the wild”—to see if that
might lead to any useful insights.

Computer science is not generally
taught relative to natural laws, other
than math itself, which is arguably a
special case. I don’t know if it should
be, or even can be, and it’s not my
intention to pass a value judgment here.

The CS folks, it seems to me, tend to
be very comfortable in a universe
bounded only by conventions that they
(or programmers like them) have
erected in the first place: language
restrictions, OS facilities, application
architectures, and programming inter-
faces. The closest they generally come
to putting one foot down on the
ground is when they consider how
their software would run on the hard-
ware they are designing—and that
interface is, at least to some extent,
negotiable with the EE denizens on the
top floor. Absolutes, in the nonnego-
tiable natural-law sense of what EEs
deal with, are unusual to them.

The best engineers I have worked
with were equally comfortable with
hardware and software, regardless of
their educational backgrounds. They
had somehow achieved a deep enough
understanding of both fields that they
could sense and adjust to whatever
world view was currently in play at a
meeting, without giving up the best
attributes of the alternative view.

There is a certain intellectual thrill
when you finally break through to a
new understanding of something, be it
physics or engineering or math—or
poetry analysis, for that matter. I
always felt that same thrill when I saw
someone blithely displaying this kind
of intellectual virtuosity.

BOTTOMS UP AND TOPS DOWN
The engineers I know who routinely

do this intellectual magic somehow
arrived at their profound level of

understanding via the random walk of
their experiences and education, com-
bined with extraordinary innate intel-
ligence. Can we teach it?

Yale Patt and Sanjay Patel think so.
It’s a basic tenet of their book,
Introduction to Computing Systems
(McGraw Hill, 2004). On the inside
cover, no less a luminary than Donald
Knuth says, “People who are more
than casually interested in computers
should have at least some idea of what
the underlying hardware is like.
Otherwise, the programs they write
will be pretty weird.”

Conversely, people who design com-
puters without a good idea of how pro-
grams are written, what makes them
easy or hard, and what makes them
fail, will in all likelihood conjure up a
useless design. I once heard a compiler
expert opine that there’s a special place
in the netherworld for computer
designers who create a machine before
they know if a compiler can be written
for it.

One other data point I’m sure of:
Me. I had taken an OS course and sev-
eral programming language courses
and did well at them, but I didn’t
understand what computer architec-
ture really meant until I had to write
assembly code for a PDP-11. My pro-
gram had to read the front panel
switches, do a computation on them,
and display the results on the front
panel lights.

My first program didn’t work reli-
ably, and I spent hours staring at the
code, line by line, trying to identify the
conceptual bug. I couldn’t find it. I
finally went back to the lab and stared
instead at the machine. Eureka! It sud-
denly occurred to me that the assign-

ment hadn’t actually stated that the
switches were debounced, and the
PDP-11 documentation didn’t say that
either. I had simply assumed it.

Mechanical switches are constructed
so that flipping the switch causes an
internal metal plate to quickly move
from one position to a new one where
it now physically touches a stationary
metal plate. Upon hitting the station-
ary plate, the moving metal repeatedly
bounces up and down until it eventu-
ally settles and touches permanently.

Even at the glacial clock rates of the
1970s, the CPU had plenty of time to
sample a switch’s electrical state during
the bounces. Debouncing them in soft-
ware was just a matter of inserting a
delay loop between switch transition
detection and logical state identification.

Without an understanding of both
the hardware and the software, I’d still
be sitting in front of that PDP-11,
metaphorically speaking.

There are always tradeoffs. The hor-
izontally stratified way we teach com-
puter systems today makes it difficult
for students to see how ideas at one
level map onto problems at another.

EVEN GOOD ABSTRACTIONS
CAN HURT

If you really want to snow a student
under, try teaching computer system
design from application to OS to logic
to circuits to silicon physics as a series
of vertical slices.

In some ways, I think this problem
was fundamental to Intel’s failed 432
chips from the early 1980s—they were
“capability-based” object-oriented sys-
tems in which one global, overriding
paradigm was present. The system was
designed from one point of view, and
to understand it you had to adopt that
point of view. To wit: Everything—and
I do mean everything—was an object
in those systems. In some ways, it was
the ultimate attempt to systematically
apply the black-box paradigm to an
entire computer system.

An object in a 432 system was an
abstract entity with intrinsic capabili-
ties and extrinsic features. Every object

There is a certain
intellectual thrill when

you finally break through
to a new understanding

of something.

was protected by default against unau-
thorized access. If one object (your pro-
gram, say) wanted access to another (a
database, perhaps) your program object
had to first prove its bona fides, which
hardware would check at runtime. At a
software level, this kind of system had
been experimented with before, and it
does have many appealing features,
especially in today’s world of runaway
viruses, Trojans, worms and spam.

But the 432 went a step further and
made even the hardware an object.
This meant that the OS could directly
look up the CPU’s features as just
another object, and it could manipu-
late that object in exactly the same way
as a software object.

This was a powerful way of viewing
a computing system, but it ran directly
contrary to how computer systems are
taught. It made the 432 system incom-
prehensible to most people at first
glance. There would be no second
glance: Various design errors and a
poor match between its Ada compiler

and the microarchitecture made the
system almost unusably slow. The 432
passed into history rather quickly.

If the design errors had been
avoided, would the 432 have taken
hold in the design community? All
things considered, I don’t think so: It
had the wrong target in the first place.
The 432 was intended to address a per-
ceived looming software production
gap. The common prediction of the
late 1970s was that software was too
hard to produce, it would essentially
stop the industry in its tracks, and
whatever hardware changes were
needed to address that gap were there-
fore justified.

With a few decades of hindsight, we
can now see that the industry simply
careened onward and somehow never
quite fell into this feared abyss.
Perhaps we all just lowered our expec-
tations of quality to “fix” the software
gap. Or maybe Bell Labs’ gambit of
seeding universities in the 1970s with
C and Unix paid off with enough pro-

grammers in the 1980s. Whatever the
reason, the pool of people ready to dive
into Ada and the 432’s new mindset
was too small.

N ew paradigms are important.
Our world views make it possi-
ble for us to be effective in an

industry or academic environment, but
they also place blinders on us.

In the end, I concluded that it wasn’t
a matter of identifying which world
view is best—EE or CS. The best thing
to do is to realize that both have
important observations and intuitions
to offer and to make sure the differ-
ences are valued and not derided.

Society at large should go and do
likewise. �

Bob Colwell was Intel’s chief IA32
architect through the Pentium II, III,
and 4 microprocessors. He is now an
independent consultant. Contact him
at bob.colwell@comcast.net.

The 30th IEEE Conference on
Local Computer Networks (LCN)

Sydney, Australia – November 15-17, 2005
Call for Papers

http://www.ieeelcn.org

The IEEE LCN conference is one of the premier conferences on the leading edge of practical computer networking.
LCN is a highly interactive conference that enables an effective interchange of results and ideas among researchers, users,
and product developers. We are targeting embedded networks, wireless networks, ubiquitous computing, heterogeneous
networks and security as well as management aspects surrounding them. We encourage you to submit original papers
describing research results or practical solutions. Paper topics include, but are not limited to:

• Embedded networks • Wearable networks • Wireless networks • Mobility management
• Networks to the home • High-speed networks • Optical networks • Ubiquitous computing
• Quality-of-Service • Network security/reliability • Adaptive applications • Overlay networks
Authors are invited to submit full or short papers for presentation at the conference. Full papers (maximum of 8

camera-ready pages) should present novel perspectives within the general scope of the conference. Short papers are an
opportunity to present preliminary or interim results and are limited to 2 camera-ready pages in length. All papers must
include title, complete contact information for all authors, abstract, and a maximum of 5 keywords on the cover page.

Papers must be submitted electronically. Manuscript submission instructions are available at the LCN web page at
ttp://www.ieeelcn.org. Paper submission deadline is May 10, 2005 and notification of acceptance is July 28, 2005. h

General Chair: Program Chair: Program Co-Chair:
Burkhard Stiller Hossam Hassanein Marcel Waldvogel
University of Zürich, and Queen’s University University of Konstanz
ETH Zurich, Switzerland Canada Germany
stiller@tik.ee.ethz.ch hossam@cs.queensu.ca marcel.waldvogel@uni-konstanz.de

